
Automating the Transfer of a Generic Set of
Behaviors Onto a Virtual Character

Andrew Feng1, Yazhou Huang2, Yuyu Xu1, and Ari Shapiro1

1 Institute for creative Technologies, Playa Vista, CA, USA,
2 University of California, Merced, Merced, CA, USA

Abstract. Humanoid 3D models can be easily acquired through various
sources, including online. The use of such models within a game or sim-
ulation environment requires human input and intervention in order to
associate such a model with a relevant set of motions and control mech-
anisms. In this paper, we demonstrate a pipeline where humanoid 3D
models can be incorporated within seconds into an animation system,
and infused with a wide range of capabilities, such as locomotion, object
manipulation, gazing, speech synthesis and lip syncing. We offer a set of
heuristics that can associate arbitrary joint names with canonical ones,
and describe a fast retargeting algorithm that enables us to instill a set
of behaviors onto an arbitrary humanoid skeleton. We believe that such
a system will vastly increase the use of 3D interactive characters due to
the ease that new models can be animated.

Keywords: animation, graphics, system, retargeting

1 Motivation

3D characters are commonly seen in video games, feature films, mobile phone ap-
plications and web sites. The generation of an expressive 3D characters requires
a series of stages, including the generation of a character model, specifying a
skeleton for that model, deforming the model according to the movement of
the skeleton, applying motion and control algorithms under a framework, and
finally instructing the character to perform. Each of these processes requires a
different skillset. For example, 3D models are generated by digital modelers or
through hardware-based acquisition, while animators create or apply motion to
the characters.

Thus, while many high quality assets such as humanoid models or motion
capture data can be readily and inexpensively acquired, the integration of such
assets into a working 3D character is not automated and requires expert inter-
vention. For example, after motion capture data is acquired, it then needs to
be retargeted onto a specific skeleton. An acquired 3D humanoid model needs a
skeleton that satisfies the constraints of a real-time game system, and so forth.
Modern game engines provide a means to visualize and animate a 3D character,
but require assembly by a programmer or game designer. The complexity of an-
imating 3D virtual characters presents an obstacle for the end user, who cannot

In Proceedings of the 5th International Conference on Motion in Games (MIG), Rennes, France, 2012

2 Feng et al.

easily control a 3D character without the assistance of specialists, despite the
broad availability of the models, assets and simulation environments.

To address this problem, we present a system that allows the rapid incorpo-
ration of high-fidelity humanoid 3D models into a simulation. Characters intro-
duced to our system are capable of executing a wide range of common human-like
behaviors. Unlike a traditional pipeline, our system requires no intervention from
artists or programmers to incorporate such characters after the assets have been
generated. Our pipeline relies upon two key automated processes:

1) An automated skeleton matching process; skeletons are examined to find
a match between the new skeleton, and one recognized by the simulation. Such
a process looks for similarly named joints, as well as relies on expected topology
of humanoid in order to recognize similarly functioning body parts.

2) A retargeting process that can transfer high quality motion sets onto a
new character without user intervention.

In addition, the virtual character’s capabilities are generally based on two
different sources:

A) A set of controllers that can generate motion by means of rules, learned
models, or procedurally-based methods, and

B) A set of behaviors generated from animation data that can be parameter-
ized across various dimensions, such as running speed for locomotion, or reaching
location for interaction with other 3D objects.

2 Related Work

The first stage of our system utilizes an automated mapping process which uses
a set of heuristics for mapping an arbitrarily named humanoid skeleton onto a
common skeleton with familiar names. To our knowledge, no such algorithm has
been previously published. Many other methods for registering skeletons require
matching names or manual annotations [19]. At the time of this writing, [2]
demonstrates a process by which a skeleton can be automatically registered, but
no technical details are provided regarding underlying algorithms and robust-
ness. In addition, we are aware of systems such as [4] which attempt to automate
the acquisition of motion and models, but have not seen any details regarding
the skeleton rig recognition step.

The second stage of our system utilizes a fast, but offline retargeting system
to generate animations appropriate for a particular skeleton. Retargeting has
been an area of much research in the animation community since Gleicher [9]’s
work which uses optimization and low-pass filtering to retarget motion. Many
other retargeting algorithms use various approaches: Kulpa [16] retargets motion
by using angular trajectories, and then solve several body areas, Less[17] uses
a hierarchical approach to retargeting, Mozani[21] uses an intermediate skele-
ton and IK to handle retargeting between skeletons with different topologies.
Kulpa[16] retargets motion through a morphology-independent representation
by using angular trajectories, and then solving several body areas. Taku[12] uses

Automating the Transfer ... 3

spatial relationships for motion adaptation which can handle many contact-
based motion retargeting problems. Zordan[31] retargets optical data directly
onto a skeleton via a dynamics-based method. Shin[27] uses an online retarget-
ing method via an analytical IK method that prefers the preservation of end
effector values. Choi[6] uses a Jacobian-based IK method for online retargeting.

Our retargeting system attempts to find footplants in order to better retarget
movement. An online footplant detection and enforcement method is presented
in Glardon’s work[8]. By contrast our retargeting method enforces footplants
offline, and doesn’t modify the length of limbs as in [15] so as to be compatible
with many game and simulation skeleton formats. Similar to our goals, the work
in [10] is focused on retargeting to creatures with a varying morphology, such as
differing number of legs, tails or the absence of arms. The system described in
that work relies heavily on inverse kinematics in performing online retargeting
based on semantic descriptions of movement. By contrast, we are interested in
offline, but relatively fast retargeting of high quality motions onto humanoid
characters that cannot be achieved via simple walk cycles and reaching con-
straints. [19] develops a system to automatically assemble a best-fitting rig for a
skeleton. By contrast, our system assumes the skeleton and model have already
been connected, and focus on the use of such skeleton in real time simulations.

The characters in our system can be instructed to perform certain behaviors
using the Behavioral Markup Language (BML) [14]. BML provides a high-level
XML-based description of a set of tasks that can be synchronized with each
other. Many systems have been developed to utilize BML, such as EMBR [11],
Elckerlyc [30], Beat [5] and Greta [23] in addition to our system, SmartBody
[28, 25]. However, to our knowledege, no other BML-based systems besides our
own have implemented extensive character locomotion capabilities or generic
capabilities such as object manipulation [7] which are associated with large sets
of behaviors. Since the BML specification emphasizes speech, head movements
and gestures, most BML-compatible systems emphasize only those features.

Fig. 1. A set of characters from many different sources are automatically retargeted
and registered into our system. The characters can now perform a number of tests with
controllers and parameterized motions in order to insure that the behavior has been
properly transferred: gazing, object manipulation, locomotion, head nodding, etc.

4 Feng et al.

Fig. 2. Mapping a customized behavior set onto a character. In this case, a set of
locomotion animations stylized for female is mapped onto an arbitrary female character.
Note that the choice of behavior sets are chosen by the user at the time of creation.

3 Automatic Skeleton Joint Mapping

One of the challenges of using an off-the-shelf character model is that the user
has to first set up a joint mapping table to comply with the skeletal system
and motion data used for the target system/application. This step is critical
for many motion parameterization procedures like retargeting, and although be-
ing a trivial task, it is commonly done by hand. In this submission we propose
a heuristic-based automatic skeleton joint mapping. Our method utilizes the
skeleton hierarchy structure and symmetries, combined with keyword searching
to help determine certain key joints in the hierarchy. We have successfully val-
idated our automatic mapping method using character skeletons from various
popular sources (mixamo.com, rocketbox-libraries.com, turbosquid.com, axyz-
design.com, 3DSMax, MotionBuilder), results shown in Fig. 2.

Our goal is to map a list of arbitrary joints from any user-defined biped
skeleton to the set of canonical joints on the target skeleton inside our character
animation system. Fig 3 shows the final mapping result to be achieved from left
side mapped to the right side. Left side as an example follows MotionBuilder[1]
standard skeleton joint naming convention, and right side is the corresponding
names in our SmartBody standard skeleton. We do not intend to map all the
joints, and in many cases not all joints can be mapped easily. We map only a
basic set of joints that would enable most of our controllers to drive user-defined
characters for behaviors like gaze, reaching and locomotion.

The mapping is largely based on heuristics and is specifically adapted to our
system. The first step is to find the character’s base joint. We only consider
the situation where the input skeleton is biped, in which case the base is usually
defined as the parent of spine and two legs. Fig 4 (top left) generalizes some of the
variations found in our testing skeletons, and the routine is partially outlined
in Algorithm 1. Once the base joint is found, our algorithm tries to map the
remaining key joints based on the symmetry/hierarchy of the canonical target
skeleton and the assumption that source skeleton will have similar properties.

Automating the Transfer ... 5

Reference
Hips
Spine
Spine1
Spine2
Spine3∗

Neck
Head
LeftEye

LeftShoulder
LeftArm
LeftArmTwist∗

LeftForeArm
LeftForeArmTwist∗

LeftHand
LeftHandThumb1∼4
LeftHandIndex1∼4
LeftHandMiddle1∼4
LeftHandRing1∼4
LeftHandPinky1∼4

LeftUpLeg
LeftLeg
LeftFoot
LeftToeBase
LeftToeBase2
LeftToeBase3∗

...[right side joints] ...

base
spine1
spine2
spine3
spine4
spine5
skullbase
eyeball left

l acromioclavicular
l shoulder
l elbow
l forearm
l wrist
l thumb1∼4
l index1∼4
l middle1∼4
l ring1∼4
l pinky1∼4

l hip
l knee
l ankle
l forefoot
l toe

...[right side joints] ...

Fig. 3. Final mapping result achieved by our system, left side is given as an example
following MotionBuilder naming convention, right side is the corresponding joint names
in our system. ∗ denotes joint (if exists) is skipped as it’s not handled by our system.

Here we could only show a small portion of this procedure, Fig 4 and Algorithm 2
and 3 outline part of the search routines for spine/chest and arm joint-chain
respectively, however more complicated cases are also handled. As an example,
if two joints are found sharing the same parent joint (Spine #), both have the
same depth also the same number of children joints, the algorithm will assume
they are either acromioclavicular or shoulder, and then determine left/right using
their joint names. Another example is that based on the depth of shoulder and
wrist in the hierarchy, the heuristic determines if twist joints are present in-
between and estimates the mapping accordingly. In certain cases the heuristics
may rely on keyword search inside joint names to determine the best mapping,
but switches to purely hierarchy-based mapping when not successful. Please refer
to our code base (Section 5) for details of the mapping procedure. Characters
with uncommon hierarchy/joint names may break the heuristics, such as with
the presence of extra joints (wings, tails, etc) or asymmetrical hierarchy, in which
case the user needs to manually complete the mapping starting with the partial
mapping table generated by the algorithm.

4 Retargeting

The motion retargeting process works by transferring an example motion set
from our canonical skeleton to a custom skeleton provided by the user. The

6 Feng et al.

Joint search for base

base

spine

l_hip r_hip

case 1
SmartBody

base

spine

case 2
mixamo skel

root

base

spine

case 3
3d max biped

root
Joint search for Spine , AC, Shoulder

spine3
(chest)

r_sh
o

u
ld

er

r_AC

case 1

spine3
(chest)

case 3
r_sh

o
u

ld
er

spine3
(chest)

case 2

r_sh
o

u
ld

er

r_AC

Joint search for arm Joint-chain

r_wrist

case 1

r_shoulder

r_elbo
w

r_AC

r_wrist

r_shoulder

r_elbow

r_AC

r_uparmTwist

r_forearm

(not mapped)

case 3

r_wrist

r_shoulder

r_elbow

r_AC

r_uparmTwist

r_forearm

case 2

(not mapped)

Joint to search Search keyword Alternatives

skullbase head skull
l_wrist hand wrist wrist

l_ankle ankle foot

l_thumb thumb finger0 pollex
l_index index finger1 pointer, forefinger
l_middle middle, mid, finger2 medius
l_ring ring finger3 fourth
l_pinky pinky finger4 little
eyeball_left eye (but not lid, brow, lash)

Keywords used in joint search

Fig. 4. An illustration of various configurations generalized from testing skeletons for
certain key joints and joint-chain mapping using heuristics.

Algorithm 3 Search routine for arm joint-chain.

1. J ← acromioclavicular (AC)
2. while J ← J.child() do
3. if J has 5 children then
4. MAP(wrist, J)
5. else if J.num children() = 0 then
6. J ← J.parent()
7. MAP(wrist, J)
8. end if
9. end while
10. if not wrist.mapped() then
11. return WRIST NOT FOUND
12. end if
13. J1 ← shoulder ; J2 ← wrist

14. switch (J2.depth− J1.depth)
15. case 2:
16. uparm ← shoulder
17. MAP(uparm);MAP(elbow)
18. case 3:
19. MAP(uparm);MAP(elbow)
20. case 4:
21. MAP(uparm);MAP(elbow)

if forearm then MAP(forearm)
22. case 5:
23. MAP(uparm);MAP(elbow);

MAP(forearm)
24. end switch

retargeting process can be separated into two stages. The first stage is to convert
the joint angles encoded in a motion from our canonical skeleton to the custom
skeleton. The second stage is to enforce various positional constraints such as
foot positions to remove motion artifacts such as foot sliding.

4.1 Motion Data Transfer

The goal of this stage is to transfer the motion data such as joint angles from
a source skeleton to a target skeleton. Joint values can be directly copied over
for skeletons with aligned local frames and initial T-poses. However in most
cases, a skeleton provided by the user tends to have different setup and default
pose from our canonical skeleton. Therefore we first need to align the default
pose between the target skeleton and our canonical skeleton. This is done by
recursively rotating each bone segment in target skeleton to match the global

Automating the Transfer ... 7

Algorithm 1 Search routine for base
joint.

1. while i ≤ max search depth do
2. J ← skeleton.joint(i)
3. switch (J.num children())
4. case 2:
5. if J has 2 symmetrical children then
6. return MAP(base, J)
7. end if
8. case 3:
9. if J has 2 symmetrical children then
10. return MAP(base, J); MAP(spine)
11. end if
12. end switch
13. end while
14. return BASE NOT FOUND

Algorithm 2 Search routine for spine,
chest, acromioclavicular and head joints.

1. J ← base
2. while J ← J.child() do
3. if J.num children() ≥ 2 then
4. MAP(Spine4, J) {chest joint}
5. break
6. else
7. MAP(spine#, J)
8. end if
9. end while
10. if J has 2 symmetrical children then
11. MAP(AC, J.child())
12. end if
13. if J.child().name() = ”Head” then
14. MAP(skellbase, J.child())
15. end if

direction of that segment in source skeleton at default pose (Fig 5 left) so that the
target skeleton is adjusted to have the same default pose as the source skeleton.

Target Skeleton
After Alignment

Source Skeleton

r_shoulder

Target Skeleton
Before Alignment

r_shoulder

Before Local Frame Alignment After Local Frame Alignment

Fig. 5. Left side shows alignment of a bone segment between two skeletons so that
target skeleton matches the pose of source skeleton. Right side shows re-orientation
of joint local frames so that they align with the canonical world frame, which enables
straightforward transfer of motion data from source to target skeleton.

Once the default pose is matched, we address the discrepancy between their
local frames by adding suitable pre-rotation and post-rotation at each joint in
target skeleton. Specifically, given a joint bi, with its global rotation RG and
initial local rotation qinit when in default T-pose, we re-orient its local frame as

q′ = qinit RG−1 q RG , where q′ is the actual local rotation after re-orientation,
and q is the standard rotation that complies with the default global frame. In
other words, the original local frame of bi is re-oriented to align with the default
canonical global frame as shown in Fig 5 right, e.g. a left 30◦ turn around Y-
axis in Y-Up global frame simply means setting q = quat((vec(0, 1, 0), 30) without
considering the initial rotation of bi. Since our canonical skeleton already has all of
its joint local frames aligned with the global frame, this in turn aligns joints in both
skeletons into the same local frames. Therefore the motion data transfer can now be
done trivially by copying the joint rotations to the target skeleton. Similarly, the root
translation pr can also be transferred to the target skeleton by scaling it according to

8 Feng et al.

the length of legs between two skeletons. The scale factor sr is computed as sr = lt
ls

,
where lt is the leg length of target skeleton and ls is that of source skeleton. For
motions created specifically for skeletons with non-canonical alignments, we reverse

the re-orientation process as q = RG qinit−1
q′ RG−1

to make these motions become
aligned with default global frame, which can be directly applied to any skeleton after
realignment in a very straightforward fashion.

4.2 Constraint Enforcement

Once motion data is transferred, they would serve as a rough approximation to enable
the target skeleton with various behaviors such as locomotion. However the transferred
motion may not work perfectly on the target skeleton due to different limb lengths,
which may result in foot sliding artifacts, etc. This problem could be seen in many kinds
of motions after naive data transfer but is mostly visible among locomotion sets. In
order to alleviate these artifacts, we apply inverse kinematics to enforce the foot plant
constraint in the transferred motions. The inverse kinematic method we use is based
on Jacobian pseudo-inverse, ∆Θ = J+∆x + (I − J+J)∆z, where J+ = JT (JJT)−1

is the pseudo-inverse of Jacobian matrix J , ∆x is the offset from current end effector
coordinates to target coordinates xr, and ∆z is the desired joint angle increments
toward target pose z = Θ̃. The above IK method deforms an input pose to satisfy the
end effector constraint, while maintaining the target pose z as much as possible. We
apply this IK method at each motion frame in the locomotion sequences to ensure the
foot joint is in the same position during the foot plant stage.

Previous methods exist for detecting and fixing foot sliding [15, 8]. They mostly
work by finding a time range over which the foot plant occurs, and enforce the foot
plan during that period. Additional smoothing is usually required to ensure that the
constraint enforcement does not create popping artifacts in the motion. Through our
experiments, we found that it is difficult to robustly detect foot plant range across dif-
ferent type of motions. Also, without careful consideration, smoothing may create more
motion artifacts if foot plant is not correctly found. Since we assume that the original
motion is smooth and does not contain foot sliding, we choose to warp the original
motion trajectory and enforce constraints over the whole trajectory. Let ps(t), pd(t) be
the foot position trajectory for source and target skeleton. We create a new trajectory
for target skeleton by warping the original trajectory using the following equation,

p′d(0) = pd(0)

p′d(t+ δt) = p′d(t) + sr(ps(t+ δt) − ps(t))

, where p′d is the new target trajectory, and sr is the scaling factor based on leg length
from the previous section. The above equation warps the foot trajectory from original
skeleton based on the scale of target skeleton. This was proven to work well during our
experiments on various skeletons with different limb lengths and proportions. Good
robustness was shown on different motion styles with no additional smoothing needed.

5 Discussion

Character Capabilities The system is able to infuse characters with a number of
capabilities, based on a set of controllers primarily driven through various procedurally-
based algorithms, as well as through a set of motion examples that are blended together

Automating the Transfer ... 9

so as to provide a range of behavior and movement. The gazing [28], head movements
[28], and saccades [18, 25] have been described in previous work and are based on
controllers that rely upon joint placement and models of human movement, while object
manipulation, locomotion and constraints [7] and other primarily parameterized motion
data is based on blending similar motion clips together, whose methods have been
described elsewhere. Interactive control is primarily done via the Behavioral Markup
Language (BML) [14], a high level XML interface that allows the specification and
coordination of various behaviors together.

It is important to note that low-fidelity motion can be generated without the need
for retargeting or the need to identify a full humanoid skeleton, such as generated by
[10]. For example, a footstep-based locomotion method can be used in combination
with IK to generate basic character movement, and various IK methods can be used
to generate reaching and touching actions. However, such movements would lack the
fidelity that can potentially be achieved by using high-quality motion examples, and
would only be suitable for low-resolution models or characters. By contrast, we offer
a pipeline where extremely high-fidelity motion, such as those generated from motion
capture, can be incorporated onto high-resolution models and characters.

Behavior Libraries We have identified a set of behaviors that enable a virtual
character to perform a large number of common tasks such as walking, gazing, gestur-
ing, touching and so forth. In the authors opinion, this set represents a minimal, but
expressive set of capabilities for a 3D character for traditional uses in games, simula-
tions and other offline uses. Behaviors suited for a particular environment or specific
situation can be added by including and retargeting animation clips, or parameterized
sets of similar motion clips parameterized for performances along a range of motion
(locomotion parametrization shown in Fig. 6). However, the focus of this work is to
quickly and easily generate a 3D character that would be useful in a wide variety of
circumstances, thus the authors feel that a critical aspect to this work is the recognition
and inclusion of such behavior sets as part of such a system.

By providing an automated means to transfer a set of motions, and potentially, a
set of behaviors, onto a character, we envision the widespread development of behavior
libraries separate from a particular game or simulation. As digital artists create libraries
of models for generic use, so too can motion developers capture or design a library of
animations for generic use as well. Thus, experts in crafting motion can create both
stylized or context-specific motion sets. Game or simulation designers can then choose
from a set of motions in the same way that they can choose from a set of models. By
loosening the bond between the motion and the model, we greatly increase the use
and reuse of digital assets. By contrast, most motion libraries offered are specific to
particular characters, specific simulation environments, or represent standalone motion
clips instead of a broad range of similar useful multi-purpose motion.

Stylizing Behavior Sets It is important to note that there are wide variations in
style among behaviors. For example, walking style can vary greatly between people.
Thus, while a locomotion behavior can be automatically infused into a character, all
such characters will end up walking in a similar way. This limitation can be remedied in
part by providing additional stylized behavior sets (for example both male and female
locomotion sets, see Fig. 1). Additional variations in style, emotion or performance
(such as joyful v.s. sad movements) would also require additional behavior sets. Alter-
natively, the integration of motion style editing or modification research such as those

10 Feng et al.

found in [26], [20], [22], [29], [24], [3], [13] provide an excellent complement to the in-
corporation of behavior sets. Such style editing could be applied to an entire behavior
set, resulting in a wide variation of performance. For behaviors primarily generated
through controllers (such as gaze and nodding), certain settings can be modified to
change the style or performance. For example, the speed/intensity at which the gazing
is engaged, or the number of repetitions for head nods.

Limitations Our skeleton mapping algorithm is limited to humanoid or mostly hu-
manoid forms. It assumes that characters have human-like structure: two arms, two
legs, elbows, shoulders, knees and so forth. In addition, many controller-based behav-
iors require a minimum configuration of joints in order to be fully-realized. For example,
the gaze control requires a number of joints, stretching from the lower back to the eyes
in order to gaze while engaging several body parts at once. Also, the behavior sets that
rely on single or parameterized motion sets require a reasonable match between the
original motion subject on which the data was captured, and the targeted skeleton. If
the skeleton topology or bone proportions fall too far outside of normal human limits,
the appearance quality of the behavior will be deteriorated.

Facial animation and lip syncing is an important part of many games and simu-
lations involving animated characters. However, while the topology and hierarchy of
skeleton bodies are somewhat standardized, facial topology and hierarchies are not.
For example, it is reasonable to assume that a humanoid character has knees, but un-
reasonable to assume that the same skeleton has a cheek joint. The issue is further
complicated by the common use of both blend-shape and joint-based facial animation
methods. As a result, little can be assumed about the face of an arbitrary humanoid
skeleton to allow the incorporation into an automated pipeline. On the other hand,
our system is able to automatically generate both facial expressions and lip syncing
to characters who have specified a minimal set of FACS units and a small number
of mouth shapes used for lip syncing, while incorporating synthesized speech via a
text-to-speech engine. Such specification requires the manual creation of FACS/mouth
poses by artists, however these additional efforts lie outside of the automatic pipeline.

Conclusion We have described a pipeline for incorporating high-quality humanoid
assets into a virtual character and quickly infuse that character with a broad set of
behaviors that are common to many games and simulations. We believe that by au-
tomating the incorporation of models, we are lowering the barrier to entry for end
users and potentially increasing the number and complexity of simulations that can
be generated. We offer our entire code base for inspection and evaluation under LPGL
licensing at http://smartbody.ict.usc.edu/. Please see our accompanying video at :
http://people.ict.usc.edu/∼shapiro/mig12/paper9/.

References

1. Autodesk motionbuilder real-time 3d character animation software,
http://www.autodesk.com/motionbuilder

2. Cross-platform game engine with authoring tool, new feature demo of version 4.0
pre-release., http://www.unity3d.com

3. Amaya, K., Bruderlin, A., Calvert, T.: Emotion from motion. In: Proceedings of the
conference on Graphics interface ’96. pp. 222–229. GI ’96, Canadian Information
Processing Society, Toronto, Ont., Canada, Canada (1996)

Automating the Transfer ... 11

Fig. 6. In the figures above, we map a set of 20 motion captured locomotion animations
to drive an arbitrary character. The motion captured locomotion data set is of much
higher visual quality than can be generated via procedural techniques such as through
the use of IK or footstep models.

4. Arikan, O., Ikemoto, L.: Animeeple character animation tool (2011)
5. Cassell, J., Vilhjálmsson, H.H., Bickmore, T.: Beat: the behavior expression anima-

tion toolkit. In: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. pp. 477–486. SIGGRAPH ’01, ACM, New York, NY,
USA (2001), http://doi.acm.org/10.1145/383259.383315

6. jin Choi, K., seok Ko, H.: On-line motion retargetting. Journal of Visualization
and Computer Animation 11, 223–235 (1999)

7. Feng, A.W., Xu, Y., Shapiro, A.: An example-based motion synthesis technique
for locomotion and object manipulation. In: I3D. pp. 95–102 (2012)

8. Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection
and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (Mar 2006)

9. Gleicher, M.: Retargetting motion to new characters. In: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques. pp. 33–42.
SIGGRAPH ’98, ACM, New York, NY, USA (1998)

10. Hecker, C., Raabe, B., Enslow, R.W., DeWeese, J., Maynard, J., van Prooijen, K.:
Real-time motion retargeting to highly varied user-created morphologies. In: ACM
SIGGRAPH 2008 papers. pp. 27:1–27:11. SIGGRAPH ’08, ACM, New York, NY,
USA (2008), http://doi.acm.org/10.1145/1399504.1360626

11. Heloir, A., Kipp, M.: Embr a realtime animation engine for interactive embodied
agents. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjlmsson, H. (eds.) Intelligent Vir-
tual Agents, Lecture Notes in Computer Science, vol. 5773, pp. 393–404. Springer
Berlin / Heidelberg (2009)

12. Ho, E.S.L., Komura, T., Tai, C.L.: Spatial relationship preserving charac-
ter motion adaptation. ACM Trans. Graph. 29(4), 33:1–33:8 (Jul 2010),
http://doi.acm.org/10.1145/1778765.1778770

13. Hsu, E., Pulli, K., Popović, J.: Style translation for human motion. ACM Trans.
Graph. 24(3), 1082–1089 (Jul 2005)

14. Kopp, S., Krenn, B., Marsella, S., Marshall, A., Pelachaud, C., Pirker, H., Thrisson,
K., Vilhjlmsson, H.: Towards a common framework for multimodal generation:
The behavior markup language. In: Gratch, J., Young, M., Aylett, R., Ballin, D.,
Olivier, P. (eds.) Intelligent Virtual Agents, Lecture Notes in Computer Science,
vol. 4133, pp. 205–217. Springer Berlin / Heidelberg (2006)

15. Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing.
In: Proceedings of the ACM SIGGRAPH Symposium on Computer Animation. pp.
97–104. ACM Press, San Antonio, Texas (2002)

12 Feng et al.

16. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of mo-
tions for interactive human-like animation. Computer Graphics Forum, Eurograph-
ics 2005 special issue 24, 343–352 (2005)

17. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-
like figures. In: Proceedings of the 26th annual conference on Computer graph-
ics and interactive techniques. pp. 39–48. SIGGRAPH ’99, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA (1999)

18. Lee, S.P., Badler, J.B., Badler, N.I.: Eyes alive. ACM Trans. Graph. 21, 637–644
(July 2002), http://doi.acm.org/10.1145/566654.566629

19. Miller, C., Arikan, O., Fussell, D.: Frankenrigs: Building character rigs from mul-
tiple sources. Visualization and Computer Graphics, IEEE Transactions on 17(8),
1060 –1070 (aug 2011)

20. Min, J., Liu, H., Chai, J.: Synthesis and editing of personalized stylistic human
motion. In: Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive
3D Graphics and Games. pp. 39–46. I3D ’10, ACM, New York, NY, USA (2010)

21. Monzani, J.S., Baerlocher, P., Boulic, R., Thalmann, D.: Using an intermediate
skeleton and inverse kinematics for motion retargeting. Computer Graphics Forum
19(3) (2000), citeseer.nj.nec.com/monzani00using.html

22. Neff, M., Kim, Y.: Interactive editing of motion style using drives and correla-
tions. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. pp. 103–112. SCA ’09, ACM, New York, NY, USA (2009)

23. Niewiadomski, R., Bevacqua, E., Mancini, M., Pelachaud, C.: Greta: an interactive
expressive eca system. In: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2. pp. 1399–1400. AAMAS
’09, International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC (2009), http://dl.acm.org/citation.cfm?id=1558109.1558314

24. Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: multidimensional mo-
tion interpolation. Computer Graphics and Applications, IEEE 18(5), 32 –40
(sep/oct 1998)

25. Shapiro, A.: Building a character animation system. In: Proceedings of the Fourth
International Conference on Motion In Games. Springer, Berlin (2011)

26. Shapiro, A., Cao, Y., Faloutsos, P.: Style components. In: Proceed-
ings of Graphics Interface 2006. pp. 33–39. GI ’06, Canadian Infor-
mation Processing Society, Toronto, Ont., Canada, Canada (2006),
http://dl.acm.org/citation.cfm?id=1143079.1143086

27. Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: An
importance-based approach. ACM Trans. Graph. 20(2), 67–94 (Apr 2001),
http://doi.acm.org/10.1145/502122.502123

28. Thiebaux, M., Marsella, S., Marshall, A.N., Kallmann, M.: Smartbody: behavior
realization for embodied conversational agents. In: 7th int’l joint conference on
Autonomous agents and multiagent systems (AAMAS). pp. 151–158. International
Foundation for Autonomous Agents and Multiagent Systems (2008)

29. Wang, J.M., Fleet, D.J., Hertzmann, A.: Multifactor gaussian process models for
style-content separation. In: Proceedings of the 24th international conference on
Machine learning. pp. 975–982. ICML ’07, ACM, New York, NY, USA (2007)

30. van Welbergen, H., Reidsma, D., Ruttkay, Z., Zwiers, J.: Elckerlyc. Journal on
Multimodal User Interfaces 3, 271–284 (2009)

31. Zordan, V.B., Van Der Horst, N.C.: Mapping optical motion capture data to
skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. pp. 245–250. SCA ’03,
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2003)

